Звуковой сигнализатор разряда аккумулятора

Этот несложный прибор оповестит о разряде 12-вольтовой (например, автомобильной) аккумуляторной батареи звуком зуммера. Появление звукового сигнала будет означать, что аккумулятор разряжен и требует подзарядки. Порог чувствительности компаратора составляет приблизительно 0,2 вольта.

Схема собрана всего на трёх транзисторах и доступна для повторения даже начинающими радиолюбителями.

В режиме ожидания потребляемый ток около 3 ма, а при работе зуммера – около 4 ма.

Схема устройства приведена на рисунке:


Левая часть схемы на транзисторе Т1 представляет из себя компаратор, определяющий порог напряжения, ниже которого не должен разряжаться аккумулятор. Правая часть схемы на транзисторе Т2 – это звуковой генератор, а Т3 – усилитель.

Состояние разряда аккумулятора приблизительно можно оценить ориентируясь на данные таблицы:

Напряжение, В Заряд, %
12,6-12,9 100
12,3-12,6 75
12,1-12,3 50
11,8-12,1 25
11,5-11,8

При подключении питания 12 вольт устройство начинает работать сразу, если же этого не произошло, значит, возможно, где-то в монтаже допущена ошибка.

Регулятором R1 следует добиться пропадания звука зуммера при заряженном состоянии аккумулятора, тогда зуммер включится, если напряжение снизится примерно на 0,2 вольта.

Проверка схемы сводится к простым действиям.

Отсоединяем коллектор транзистора Т1 от схемы, подключив питание, и убеждаемся, что звуковой генератор работает. Тональность звука можно изменить (если не устраивает) подбором номинала конденсатора С1. После этого восстанавливаем соединение коллектора Т1 по схеме.

После этого можно перейти к настройке компаратора, собранного на транзисторе Т1. Для этого, включив питание, измеряем вольтметром напряжение на стабилитроне ZD1: оно должно быть 5 вольт. Далее плавно поворачиваем движок потенциометра R1 и добваемся появления звукового сигнала. При плавном повороте в обратную сторону движка этого потенциометра звук должен пропасть.

Для финальной настройки желательно запитать схему от регулируемого источника постоянного тока напряжением до 15 вольт. Подключаем параллельно питанию цифровой мультиметр в режиме вольтметра, выставляем по этому вольтметру напряжение, соответствующее предельному уровню разряда аккумулятора (по таблице выше) и регулировкой R1 добиваемся пропадания звукового сигнала. Фиксируем движок R1 в найденном положении. Затем на источнике питания начинаем плавно понижать напряжение до момента появления звукового сигнала зуммера и убеждаемся, что оно примерно на 0,2 вольта ниже, чем было установлено ранее.

При каком уровне понижения напряжения должно сработать звуковое оповещение, каждый пользователь может выставить регулятором R1 индивидуально.

На базе этой схемы можно сделать нагрузочную вилку для проверки аккумуляторов под нагрузкой, если дополнить схему мощным проволочным резистором, сопротивлением порядка 1,2 Ом, параллельно проводам питания схемы. Такая нагрузочная вилка позволит проверять степень просадки напряжения аккумулятора при протекании тока около 10А, допустимый уровень просадки выставляется, как и ранее, потенциометром R1.

В схеме в качестве транзистора Т2 следует ставить только указанный тип транзистора 2SC945. Т1 и Т3 можно заменить на аналоги, например 2SC1213, 2N2222 или подобные им отечественные КТ315, КТ503. Стабилитрон ZD1 – любой маломощный на напряжение стабилизации 5 вольт. Буззер – обычный электродинамический излучатель с сопротивлением обмотки около 50 Ом (такие применяются на компьютерных платах).

Читайте также:  Инициализация ps4 полная или быстрая

Можно слегка видоизменить схему, избавившись от стабилитрона:


В этой схеме вместо стабилитрона используется обычный светодиод HL1, который одновременно является и индикатором наличия питания устройства.

Владимир Науменко
г. Калининград

Собрав несложную и весьма полезную схему звукового сигнализатора разряда, вы сможете оперативно узнать о низком напряжении на клеммах аккумулятора и предпринять меры: зарядить его обыкновенным сетевым зарядным устройством или через встроенный генератор на транспорте.

Схема состоит из двух частей:
первая, следящая за разницей потенциалов и вторая – элементарнейший звуковой генератор . Разберем принцип работы.

Сначала последовательно включены резистор стабилитрон и еще один резистор. На стабилитроне падает то напряжение, на которое он рассчитан, в нашем случае 10 В, в его технической документации (1N4740A) указана максимальная мощность 1 Ватт, напряжение стабилизации 10 В (ZENER VOLTAGE RANGE), значит максимальный допустимый ток 1W/10V=0.1A, но на самом деле 91 mA (REGULATOR CURRENT), номинальный же ток стабилизации равен 25mA (TEST CURRENT).

Посчитаем сопротивление двух резисторов. Как известно при последовательном включении ток протекает на всех элементах цепи одинаковый, а вот падение напряжение на разных компонентах разниться. По условию на стабилитроне стопроцентно должно падать около 10 В, максимальное напряжения на клеммах аккумулятора 14 В, значит 14-10=4 В должно остаться в сумме на двух резисторах R=4V/25mA=160 Ohm. Но на самом деле нам недопустимо такое большое потребление на холостом ходу, поэтому мы берём резисторы с сопротивление значительно большим, вследствие чего ток уменьшается и на стабилитроне будет падать меньше чем 10 В. Мною были выбраны на 20 кОм постоянный и переменный на 3 кОм. Ток потребления будет всего около 200 мкА.

Для открытия транзистора VT1 нужно подать на его базу плюс, а на эмиттер минус, напряжение примерно 0,7 В (зависит от вашего экземпляра) за это у нас отвечает нижний резистор R2, для точной настройки используется подстрочный резистор.

К коллектору транзистора VT1 подключена база VT2. Таким образом, когда напряжение более нормы (на аккумуляторе) VT1 открыт и база VT2 подключена в минусу – он закрыт. Когда же напряжение на аккумуляторе станет меньше нормы (вы сами выбираете норму) первый транзистор закроется и теперь ничто не мешает второму быть открытым через резистор 10 кОм.

Разбор генератора звуковых колебаний: состоит он из двух транзисторов разной проводимости. Предположим, что в начальный момент времени всё транзисторы (VT3 и VT4) закрыты из-за того, что через динамик и конденсатор подается плюс на PNP транзистор. Как только конденсатор зарядиться полностью он больше не станет проводить ток для дальнейшего закрытия VT3 и теперь ничто не мешает ему открыться через резистор R4. Когда VT3 откроется через его ЭК «потечет плюс” на базу NPN VT4 и тот также откроется – теперь через КЭ четвертого транзистора и динамик протекает ток (происходит щелчок). Во время этого щелчка конденсатор оказывается замкнут через резистор и открытый переход КЭ VT4, естественно он разряжается, причём происходит это определенное время, которое зависит от ёмкости самого конденсатора и величины сопротивления резистора. Как только конденсатор разрядиться VT3 снова закроется через катушку динамической головки и C1 и далее всё пойдет также само. Несмотря на простоту RC звукового генератора на практике он не всегда стабильно работает.

Читайте также:  Горячие клавиши тачпада на ноутбуке

Резистор R5 100 Ом здесь ограничивает ток базы NPN транзистора.

То есть мы устанавливаем такое напряжение между базой и эмиттером VT1, когда при недопустимом разряде транзистор закрыт (у моего транзистора напряжение насыщение вышло 658 mV) и при малейшем увеличении напряжения на АКБ неизбежно растет падение напряжение на R2 и следственно на БЭ VT1 подается уже больше U БЭ — он открывается, закрывая VT2.

Убеждаемся еще раз в правильности конфигурации путем изменения напряжения ЛБП, должно быть вот так: при U=12V и более всё тихо, а при U менее 12V издается писк.

2 mA, а при сигнале достигает 15-20 mA.

Собрав несложную и весьма полезную схему звукового сигнализатора разряда, вы сможете оперативно узнать о низком напряжении на клеммах аккумулятора и предпринять меры: зарядить его обыкновенным сетевым зарядным устройством или через встроенный генератор на транспорте.

Схема состоит из двух частей:
первая, следящая за разницей потенциалов и вторая – элементарнейший звуковой генератор . Разберем принцип работы.

Сначала последовательно включены резистор стабилитрон и еще один резистор. На стабилитроне падает то напряжение, на которое он рассчитан, в нашем случае 10 В, в его технической документации (1N4740A) указана максимальная мощность 1 Ватт, напряжение стабилизации 10 В (ZENER VOLTAGE RANGE), значит максимальный допустимый ток 1W/10V=0.1A, но на самом деле 91 mA (REGULATOR CURRENT), номинальный же ток стабилизации равен 25mA (TEST CURRENT).

Посчитаем сопротивление двух резисторов. Как известно при последовательном включении ток протекает на всех элементах цепи одинаковый, а вот падение напряжение на разных компонентах разниться. По условию на стабилитроне стопроцентно должно падать около 10 В, максимальное напряжения на клеммах аккумулятора 14 В, значит 14-10=4 В должно остаться в сумме на двух резисторах R=4V/25mA=160 Ohm. Но на самом деле нам недопустимо такое большое потребление на холостом ходу, поэтому мы берём резисторы с сопротивление значительно большим, вследствие чего ток уменьшается и на стабилитроне будет падать меньше чем 10 В. Мною были выбраны на 20 кОм постоянный и переменный на 3 кОм. Ток потребления будет всего около 200 мкА.

Читайте также:  Инстаграм не дает зарегистрировать аккаунт

Для открытия транзистора VT1 нужно подать на его базу плюс, а на эмиттер минус, напряжение примерно 0,7 В (зависит от вашего экземпляра) за это у нас отвечает нижний резистор R2, для точной настройки используется подстрочный резистор.

К коллектору транзистора VT1 подключена база VT2. Таким образом, когда напряжение более нормы (на аккумуляторе) VT1 открыт и база VT2 подключена в минусу – он закрыт. Когда же напряжение на аккумуляторе станет меньше нормы (вы сами выбираете норму) первый транзистор закроется и теперь ничто не мешает второму быть открытым через резистор 10 кОм.

Разбор генератора звуковых колебаний: состоит он из двух транзисторов разной проводимости. Предположим, что в начальный момент времени всё транзисторы (VT3 и VT4) закрыты из-за того, что через динамик и конденсатор подается плюс на PNP транзистор. Как только конденсатор зарядиться полностью он больше не станет проводить ток для дальнейшего закрытия VT3 и теперь ничто не мешает ему открыться через резистор R4. Когда VT3 откроется через его ЭК «потечет плюс” на базу NPN VT4 и тот также откроется – теперь через КЭ четвертого транзистора и динамик протекает ток (происходит щелчок). Во время этого щелчка конденсатор оказывается замкнут через резистор и открытый переход КЭ VT4, естественно он разряжается, причём происходит это определенное время, которое зависит от ёмкости самого конденсатора и величины сопротивления резистора. Как только конденсатор разрядиться VT3 снова закроется через катушку динамической головки и C1 и далее всё пойдет также само. Несмотря на простоту RC звукового генератора на практике он не всегда стабильно работает.

Резистор R5 100 Ом здесь ограничивает ток базы NPN транзистора.

То есть мы устанавливаем такое напряжение между базой и эмиттером VT1, когда при недопустимом разряде транзистор закрыт (у моего транзистора напряжение насыщение вышло 658 mV) и при малейшем увеличении напряжения на АКБ неизбежно растет падение напряжение на R2 и следственно на БЭ VT1 подается уже больше U БЭ — он открывается, закрывая VT2.

Убеждаемся еще раз в правильности конфигурации путем изменения напряжения ЛБП, должно быть вот так: при U=12V и более всё тихо, а при U менее 12V издается писк.

2 mA, а при сигнале достигает 15-20 mA.

Ссылка на основную публикацию
Adblock detector