Задачи тело брошенное под углом к горизонту

Движение тела, брошенного под углом к горизонту

Основные формулы криволинейного движения

1. Скорость движения материальной точки

где (vec r) – радиус-вектор точки.

2. Ускорение материальной точки

где (a_< au>) – тангенциальное ускорение, (a_n) – нормальное ускорение.

3. Тангенциальное ускорение

4. Нормальное ускорение

где (R) – радиус кривизны траектории.

5. для равнопеременного движения

Выразив из второго равенства (t) и подставив в первое, получим полезную формулу

Примеры решения задач

В задачах о движении тела в поле силы тяжести будем полагать (a=g=9.8) м/с 2 .

Задача 1.

Снаряд вылетает из орудия с начальной скоростью 490 м/с под углом 30 0 к горизонту. Найти высоту, дальность и время полета снаряда, не учитывая его вращение и сопротивление воздуха.

Решение задачи

Свяжем ИСО с орудием.

Составляющие скорости по осям Ox и Oy в начальный момент времени равны:

(V_<0x>=V_0cosalpha) – остается неизменной во все время полета снаряда,

(V_<0y>=V_0sinalpha) – меняется согласно уравнению равнопеременного движения

В наивысшей точке подъема (V_y=V_0sinalpha-gt_1=0) , откуда

Полное время полета снаряда

Высоту подъема снаряда определим из формулы пути равно замедленного движения

Дальность полета определим как

Задача 2.

Из точки А свободно падает тело. Одновременно из точки В под углом (alpha) к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе. Показать, что угол (alpha) не зависит от начальной скорости (V_0) тела, брошенного из точки В, и определить этот угол, если (frac=sqrt3) . Сопротивлением воздуха пренебречь.

Решение задачи.

Свяжем ИСО с точкой В.

Оба тела могут встретиться на линии ОА (см. рис.) в точке С. Разложим скорость (V_0) тела, брошенного из точки В, на горизонтальную и вертикальную составляющие:

Пусть от начала движения до момента встречи пройдет время

За это время тело из точки А опуститься на величину

а тело из точки В поднимется на высоту

Решая последние два уравнения совместно, находим

Подставляя сюда ранее найденное время, получим

т.е. угол бросания не зависит от начальной скорости.

Задача 3.

С башни брошено тело в горизонтальном направлении со скоростью 40 м/с. Какова скорость тела через 3 с после начала движения? Какой угол образует с плоскостью горизонта вектор скорости тела в этот момент?

Решение задачи.

Дано: (V_0=40) м/с. (t=3) c.

Свяжем ИСО с башней.

Тело одновременно участвует в двух движениях: равномерно в горизонтальном направлении со скоростью (V_0) и в свободном падении со скоростью (V_y=gt) . Тогда полная скорость тела есть

Направление вектора скорости определяется углом (alpha) . Из рисунка видим, что

Задача 4.

Два тела брошены вертикально вверх из одной точки одно вслед за другим с интервалом времени, равным (Delta) , с одинаковыми скоростями (V_0) . Через какое время (t) после бросания первого тела они встретятся?

Читайте также:  Где найти промокод для джум

Решение задачи.

Из анализа условия задачи, ясно, что первое тело поднимется на максимальную высоту и на спуске встретится со вторым телом. Запишем законы движения тел:

В момент встречи (h_1=h_2) , откуда сразу получаем

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Принцип решения этих задач заключается в разложении скорости свободно падающего тела на две составляющие – горизонтальную и вертикальную. Горизонтальная составляющая скорости постоянна, вертикальное движение происходит с ускорением свободного падения g=9.8 м/с 2 . Также может применяться закон сохранения механической энергии, согласно которому сумма потенциальной и кинетической энерги тела в данном случае постоянна.

Материальная точка брошена под углом к горизонту с начальной скоростью 15 м/с. Начальная кинетическая энергия в 3 раза больше кинетической энергии точки в верхней точке траектории. На какую высоту поднималась точка?

Тело брошено под углом 40 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние, которое пролетит тело до падения, высоту подъема в верхней точке траектории и время в полете.

Тело брошено с башни высотой H вниз, под углом α к горизонту, с начальной скоростью v. Найти расстояние от башни до места падения тела.

Тело массой 0,5 кг брошено с поверхност Земли под углом 30 градусов к горизонту, с начальной скоростью 10 м/с. Найти потенциальную и кинетическую энергии тела через 0,4 с.

Материальная точка брошена вверх с поверхности Земли под углом к горизонту с начальной скоростью 10 м/с. Определить скорость точки на высоте 3 м.

Тело брошено вверх с поверхности Земли под углом 60 градусов с начальной скоростью 10 м/с. Найти расстояние до точки падения, скорость тела в точке падения и время в полете.

Тело брошено вверх под углом к горизонту с начальной скоростю 20 м/с. Расстояние до точки падения в 4 раза больше максимальной высоты подъема. Найти угол, под которым брошено тело.

Тело брошено с высоты 5 м под углом 30 градусов к горизонту с начальной скоростью 22 м/с. Найти дальность полета тела и время полета тела.

Тело брошено с поверхности Земли под углом к горизонту с начальной скоростью 30 м/с. Найти тангенциальное и нормальное ускорения тела через 1с после броска.

Тело брошено с поверхности Зесли под углом 30 градусов к горизонту с начальной скоростью 14,7 м/с. Найти тангенциальное и нормальное ускорения тела через 1,25с после броска.

Читайте также:  Жесткий диск отключается и снова включается

Тело брошено под углом 60 градусов к горизонту с начальной скоростью 20 м/с. Через какое время угол между скоростью и горизонтом станет равным 45 градусов?

Мяч, брошенный в спортзале под углом к горизонту, с начальной скоростью 20 м/с, в верхней точке траектории коснулся потолка на высоте 8м и упал на некотором расстоянии от места броска. Найти это расстояние и угол, под которым брошено тело.

Тело, брошеное с поверхности Земли под углом к горизонту, упало через 2,2с. Найти максимальную высоту подъема тела.

Камень брошен под углом 30 градусов к горизонту. На некоторой высоте камень побывал дважды – через время 1с и 3 с после броска. Найти эту высоту и начальную скорость камня.

Камень брошен под углом 30 градусов к горизонту с начальной скоростью 10 м/с. Найти расстояние от точки бросания до камня через 4 с.

Снаряд выпущен в момент, когда самолет пролетает над орудием, под углом к горизонту с начальной скоростью 500 м/с. Снаряд поразил самолет на высоте 3,5 км через 10с после выстрела. Какова скорость самолета?

Ядро массой 5 кг брошено с поверхности Земли под углом 60 градусов к горизонту. На разгон гири потрачена энергия 500Дж. Определить дальность полета и время в полете.

Тело брошено с высоты 100м вниз под углом 30 градусов к горизонту с начальной скоростью 5 м/с. Найти дальность полета тела.

Тело массой 200г, брошеное с поверхности Земли под углом к горизонту, упало на расстоянии 5м через время 1,2с. Найти работу по броску тела.

1.Тело бросили с поверхности Земли под углом= 60к горизонту с начальной скоростью v= 20 м/с. Пренебрегая сопротивлением воздуха, найти:

а) скорость тела через t= 2 с после начала движения;

б) время t1, через которое скорость будет составлять с горизонтом угол= 30;

в) время полета тела Тдо падения на Землю;

г) максимальную высоту подъема Ни дальность полетаL;

д) уравнение траектории y(x), гдеxиy– координаты тела.

а) Выбираем систему отсчетаxy,показанную на рисунке. По своему характеру данное движение есть движение с постоянным ускорениемПоэтому закон изменения скорости с течением времени имеет вид:

Найдем проекции вектора скорости на оси координат, спроектировав это уравнение на оси xиy:

Из связи между модулем вектора и его проекциями на декартовые оси получим:

б) Если - угол между вектором скорости и горизонтальной осью в некоторый момент времениt1, то:

в) Запишем закон движения тела в векторном виде, учтя, что в начальный момент тело находилось в начале координат.

Читайте также:  Идеальный источник тока характеризуется

(1)

Здесь – радиус-вектор тела в момент времениt.

Спроектируем это уравнение на ось y:

(2)

Найдем время полета тела Тиз условия, что в этот момент координатаy= 0:

Один из корней полученного уравнения Т1= 0 соответствует начальному положению тела, другой корень дает время полета тела:

г) Спроектируем уравнение (1) на ось x:

Найдем дальность полета тела Lиз условия L = x(T) :

(3)

Для того, чтобы определить максимальную высоту подъема Н, найдем время полета тела в наивысшую точку траектории из условия, что в этот момент времениТвектор скоростинаправлен горизонтально и, следовательно, проекция скорости на осьyvy= 0, т.е.

Заметим, что время подъема Т равно половине времени полетаТ. Следовательно, время подъема равно времени спуска.

д) Закон движения в координатной форме, определяемый соотношениями (2) и (3), по существу задает уравнение траектории через параметр t. Исключив этот параметр, получим уравнение траектории в явном виде:

(4)

Из (4) следует, что траектория тела, брошенного под углом к горизонту, представляет собой параболу, ветви которой направлены вниз (коэффициент при x 2 отрицателен). Парабола проходит через начало координат (один из корней уравненияy(x) = 0 равен нулю).

2.Самолет летит на высотеh= 500 м по горизонтальной прямой со скоростью v= 100 м/с. Летчик должен сбросить бомбу в цель, лежащую впереди самолета. Под каким угломк вертикали он должен видеть цель в момент сбрасывания бомбы?

Решение.Движение бомбы можно рассматривать как наложение двух движений, одно из которых происходит по горизонтали с постоянной скоростью v, а другое представляет собой свободное падение с нулевой начальной скоростью (см. рис.).

Искомый угол определяется очевидным соотношением:

где l– дальность полета по горизонтали. Эта величина равнаl= vt, гдеt– время полета бомбы находится из условия

;

3.Под каким угломк горизонту следует бросить камень со скоростьюv = 20 м/с, чтобы он пролетел по горизонтали до падения на землю расстояние? Сопротивление воздуха пренебречь.

Решение.Запишем соотношение между дальностью полетаL, начальной скоростьюv, угломи ускорением свободного паденияg(см.(3) задачи 1 этого раздела):

Здесь n– целые числа, значения которых найдем из очевидного условия:

Пусть n= 0. ТогдаПриn= 1

При других значениях nугол > 90. Итак, искомые углы равны:

4.Камень бросили горизонтально с большой высоты со скоростьюм/с. Определить черезс:

а) скорость камня и модуль приращения вектора его скорости;

б) модуль вектора перемещения камня.

Решение.а) В соответствии с выражением (1.12) скорость камня равна

,

где – ускорение свободного падения. Найдём построением скорость(см. рис.). Из полученного треугольника скоростей находим:

м/с.

По определению им/с.

б) Вектор перемещения равен

,

где , а, а его модуль

м.

Ссылка на основную публикацию
Adblock detector