Числа в тригонометрической форме не складывают и не вычитают.
1. Произведение комплексных чисел вычисляется по формуле:
Пример. Найти произведение комплексных чисел
2. Частное комплексных чисел вычисляется по формуле:
Пример. Выполнить деление комплексных чисел.
Т.е. в тригонометрической форме операции умножения и деления производятся следующим образом: для того, чтобы перемножить (разделить) два комплексных числа, нужно перемножить (разделить) их модули и сложить (вычесть) их аргументы.
Отсюда следует, что для того чтобы перемножить n комплексных чисел, нужно перемножить их модули и сложить аргументы: если φ1, φ2, . φn – аргументы чисел z1, z2, . zn, то
3. В частности, если все эти числа равны между собой, то получим формулу, позволяющую возводить комплексное число в любую натуральную степень.
Первая формула Муавра.
Пример
Дано комплексное число , найти
.
Сначала нужно представить данное число в тригонометрической форме.
Найдём модуль этого числа:
Аргумент данного числа находится из системы:
Значит, один из аргументов числа равен
.
Тогда, по формуле Муавра:
Считать на калькуляторе не нужно, а вот угол в большинстве случае следует упростить. Как упростить? Нужно избавиться от лишних оборотов. Один оборот составляет 2p радиан или 360 градусов. Выясним сколько у нас оборотов в аргументе
.Для удобства делаем дробь правильной:
, после чего становится хорошо видно, что можно убавить один оборот:
. Таким образом, окончательный ответ запишется так:
.
Можно убавить еще один оборот и получить главное значение аргумента:
4. Для извлечения корня n-й степени из комплексного числа используется вторая формула Муавра:
где — арифметический корень из модуля комплексного числа, k=0, 1, 2,…, n-1
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10070 — | 7512 —
или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ mathbb
Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = sqrt <-1>$, числа $ a,b in mathbb
$ вещественные.
Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ mathbb
Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.
Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ overline
= a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
- Алгебраическая $ z = a+ib $
- Показательная $ z = |z|e^ $
- Тригонометрическая $ z = |z|cdot(cos(varphi)+isin(varphi)) $
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Видим, что $ a,b in mathbb
Комплексное число $ z = a+ib $ представляется в виде вектора $ overline
Аргумент обозначается $ varphi $.
Модуль $ |z| $ равняется длине вектора $ overline
Аргумент комплексного числа $ varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.
Пример 2 |
Решение |
Ответ |
$$ z_1 + z_2 = 8 — i; z_1 — z_2 = -2 + 3i $$ |
Пример 3 |
Решение |
Ответ |
$$ z_1 cdot z_2 = 17 — i; frac |
Пример 4 |
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $ |
Решение |
Ответ |
Пример 5 |
Извлечь корень $ sqrt[3] <-1>$ над множеством $ mathbb |
Решение |
Ответ |
Пример 6 |
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ mathbb |
Решение |
z=a+ib. | (1) |
Задача заключается в представлении комплексного числа (1) в тригонометрической форме. Для этого на комплексной плоскости введем полярные координаты. Примем за полюс начало координат, а за полярную ось вещественную ось R.
Как известно, полярными координатами точки z являются длина r ее радиус-вектора, равной расстоянию от точки z до полюса, и величина ее полярного угла, т.е. угла, образованного между полярной осью и вектором-радиусом точки z. Отметим, что направление отсчета угла берется от полярной оси до вектора-радиуса против часовой стрелки (Рис.1, Рис.2).
На Рис.3 изображено комплексное число z. Координаты этого числа в декартовой системе координат (a, b). Из определения функций sin и cos любого угла, следует:
(2) |
Подставляя (2) в (1), получим:
(3) |
Эта форма записи называется тригонометрической формой записи комплексного числа.
Уравнения (2) возведем в квадрат и сложим:
(4) |
r−длина радиус-вектора комплексного числа z называется модулем комплексного числа и обозначается |z|. Очевидно |z|≥0, причем |z|=0 тогда и только тогда, когда z=0.
Величина полярного угла точки, соответвующей комплексному числу z, т.е. угла φ, называется аргументом этого числа и обозначается arg z. Заметим, что arg z имеет смысл лишь при z≠0. Аргумент комплексного числа 0 не имеет смысла.
Аргумент комплексного числа определен неоднозначно. Если φ аргумент комплексного числа, то φ+2πk, k=0,1. также является аргументом комплексного числа, т.к. cos(φ+2πk)=cosφ, sin(φ+2πk)=sinφ.
Приведение комплексного числа из алгебраической формы в тригонометрическую
Пусть комплексное число представлено в алгебраической форме: z=a+bi. Представим это число в тригонометрической форме. Вычисляем модуль комплексного числа: . Вычисляем аргумент φ комплексного числа из выражений
или
. Полученные значения вставляем в уравнение (3).
Пример 1. Представить комплексное число z=1 в тригонометрической форме.
Решение. Комплексное число z=1 можно представить так: z=1+0i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=1/1. Откуда имеем φ=0. Подставляя значения модуля и аргумента в (3), получим: z=1(cos0+isin0).
Пример 2. Представить комплексное число z=i в тригонометрической форме.
Решение. Комплексное число z=i можно представить так: z=0+1i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=0/1. Откуда имеем φ=π/2. Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. .
Пример 3. Представить комплексное число z=4+3i в тригонометрической форме.
Решение. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=4/5. Откуда имеем φ=arccos(4/5). Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. , где φ=arccos(4/5).
Умножение комплексных чисел в тригонометрической форме записи
z1·z2=[r1(cosφ1+i sinφ1)][r2(cosφ2+i sinφ2]=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] |
z1z2=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] | (5) |
В результате умножения комплексных чисел в тригонометрической форме мы получили комплексное число в тригонометрической форме, следовательно |z1z2|=r1r2, или
|z1z2|=|z1||z2|, | (6) |
т.е. модуль произведения комплексных чисел равен произведению модулей сомножителей .
arg(z1z2)=arg(z1)+arg(z2), | (7) |
т.е. аргумент произведения комплексных чисел равен сумме аргументов сомножителей .
Пример 4. Умножить комплексные числа и
.
Решение. Воспользуемся формулой (5):
Ответ. .
Деление комплексных чисел в тригонометрической форме записи
(8) |
Отсюда следует, что или
(9) |
Далее , или
(10) |
Следовательно, модуль частного двух комплексных чисел равен модулю делимого, деленному на модуль делителя, а аргумент частного двух комплексных чисел получается вычитанием аргумента делителя от аргумента делимого .
Пример 5. Делить комплексные числа и
.
Решение. Воспользуемся формулой (8):
Ответ. .