Ускорение свободного падения на любом расстоянии от Земли, а также на других планетах можно определить по формуле силы земного притяжения.

Cила тяжести равна гравитационной силе, т.е.

На поверхности Земли

На расстоянии r от центра Земли

Здесь:
g — ускорение свободного падения на расстоянии r от цента Земли (м/сек 2 ),
gЗемли — ускорение свободного падения на поверхности Земли (м/сек 2 ),
r — расстояние от цента Земли (метр),
rЗемли — средний радиус Земли 6.37 · 10 6 (метр),
m — масса тела (кг),
mЗемли — масса Земли 5.97 · 10 24 (кг),
γ — гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2 )),

Разделив выражение (1) на выражение (2), получим

Ускорение свободного падения убывает обратно пропорционально квадрату расстояния от цента Земли. Формула ускорения свободного падения справедлива и для других небесных тел.

Сократив выражение (2), получим ускорение свободного падения:

Решебник по физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №8
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ».

Цель работы: вычислить ускорение свободного падения из формулы для периода колебаний математического маятника:

Для этого необходимо измерить период колебания и длину подвеса маятника. Тогда из формулы (1) можно вычислить ускорение свободного падения:

1) часы с секундной стрелкой;

2) измерительная лента (Δл = 0,5 см).

Материалы: 1) шарик с отверстием; 2) нить; 3) штатив с муфтой и кольцом.

Порядок выполнения работы

1. Установите на краю стола штатив. У его верхнего конца укрепите при помощи муфты кольцо и подвесьте к нему шарик на нити. Шарик должен висеть на расстоянии 3—5 см от пола.

2. Отклоните маятник от положения равновесия на 5—8 см и отпустите его.

3. Измерьте длину подвеса мерной лентой.

4. Измерьте время Δt 40 полных колебаний (N).

5. Повторите измерения Δt (не изменяя условий опыта) и найдите среднее значение Δtср.

6. Вычислите среднее значение периода колебаний Tср по среднему значению Δtср.

7. Вычислите значение gcp по формуле:

8. Полученные результаты занесите в таблицу:

9. Сравните полученное среднее значение для gcp со значением g = 9,8 м/с 2 и рассчитайте относительную погрешность измерения по формуле:

Изучая курс физики вам часто приходилось использовать в решении задач и других расчетах значение ускорения свободного падения на поверхности земли. Вы принимали значение g = 9,81 м/с 2 , то есть с той точностью, которой вполне достаточно для производимых вами расчетов.

Целью данной лабораторной работы является экспериментальное установление ускорения свободного падения с помощью маятника. Зная формулу периода колебания математического маятника Т =

можно выразить значение g через величины, доступные простому установлению путем эксперимента и рассчитать g с некоторой точностью. Выразим

где l — длина подвеса, а Т — период колебаний маятника. Период колебаний маятника Т легко определить, измерив время t, необходимое для совершения некоторого количества N полных колебаний маятника

Математическим маятником называют груз, подвешенный к тонкой нерастяжимой нити, размеры которого много меньше длины нити, а масса — много больше массы нити. Отклонение этого груза от вертикали происходит на бесконечно малый угол, а трение отсутствует. В реальных условиях формула

имеет приблизительный характер.

Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:

В лабораторных условиях для измерения с некоторой степенью точности можно использовать небольшой, но массивный металлический шарик, подвешенный на нити длиной 1-1,5 м (или большей, если есть возможность такой подвес разместить) и отклонять его на небольшой угол. Ход работы целиком понятен из описания ее в учебнике.

Средства измерения: секундомер (Δt = ±0,5 с); линейка или измерительная лента (Δl = ±0,5 см)

Ускоре́ние свобо́дного паде́ния на пове́рхности [1] некоторых небесных тел, м/с 2 и g

Земля 9,81 м/с 2 1,00 g Солнце 273,1 м/с 2 27,85 g
Луна 1,62 м/с 2 0,165 g Меркурий 3,68—3,74 м/с 2 0,375—0,381 g
Венера 8,88 м/с 2 0,906 g Марс 3,86 м/с 2 0,394 g
Юпитер 23,95 м/с 2 2,442 g Сатурн 10,44 м/с 2 1,065 g
Уран 8,86 м/с 2 0,903 g Нептун 11,09 м/с 2 1,131 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта [2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах [3] . Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80666 м/с² [4] [5] . Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².

Содержание

Физическая сущность [ править | править код ]

Для определённости будем считать, что речь идёт об ускорении свободного падения на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центростремительного ускорения, связанного с вращением Земли.

Центростремительное ускорение [ править | править код ]

Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, центростремительное ускорение равно ω 2 a , где ω — угловая скорость вращения Земли, определяемая выражением ω = 2π/T , в котором Т — время одного оборота вокруг своей оси (звёздные сутки), равное для Земли 86164 секунды. Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с 2 , причем на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение [ править | править код ]

Гравитационное ускорение на различной высоте h над уровнем моря

h , км g, м/с 2 h , км g, м/с 2
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связано с его массой M следующим соотношением:

g = G M r 2 <displaystyle g=G<frac <2>>>> ,

где G — гравитационная постоянная (6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 ) [6] , а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрично. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо наоборот по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

g ( h ) = G M ( r + h ) 2 <displaystyle g(h)=<frac <(r+h)^<2>>>> , где M — масса планеты.

Ускорение свободного падения на Земле [ править | править код ]

Ускорение свободного падения у поверхности Земли зависит от широты, времени суток, атмосферного давления и других факторов. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле [7] [8] :

g = 9,780 318 ( 1 + 0,005 302 sin 2 ⁡ φ − 0,000 006 sin 2 ⁡ 2 φ ) − 0,000 003086 h , <displaystyle g=9<,>780318(1+0<,>005302sin ^<2>varphi -0<,>000006sin ^<2>2varphi )-0<,>000003086h,> где φ <displaystyle varphi > — широта рассматриваемого места, h <displaystyle h> — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли, дополнив её поправками, связанными с вращением Земли, приливными воздействиями и другими факторами.

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счет центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от следствий из этой упрощённой модели. Так, самое низкое значение g зафиксировано на горе Уаскаран в Перу (9,7639 м/с²) в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от северного полюса [9] .

Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Алматы 76,85 в.д. 43,22 с.ш. 786 9.78125
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80188
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Измерение [ править | править код ]

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.

Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.