Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение вероятностей непрерывной случайной величины;
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие равномерного и показательного законов распределения, формулы вероятности и числовые характеристики рассматриваемых функций.

Показатель Раномерный закон распределения Показательный закон распределения
Определение Равномерным называется распределение вероятностей непрерывной случайной величины X, плотность которого сохраняет постоянное значение на отрезке [a;b] и имеет вид Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью, имеющей вид

где λ – постоянная положительная величина
Функция распределения
Вероятность попадания в интервал
Математическое ожидание
Дисперсия
Среднее квадратическое отклонение

Примеры решения задач по теме «Равномерный и показательный законы распределения»

Задача 1.

Автобусы идут строго по расписанию. Интервал движения 7 мин. Найти: а) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее двух минут; б) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус не менее трех минут; в) математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания пассажира.

Решение. 1. По условию задачи непрерывная случайная величина X= <время ожидания пассажира>равномерно распределена между приходами двух автобусов. Длина интервала распределения случайной величины Х равна b-a=7, где a=0, b=7.

2. Время ожидания будет менее двух минут, если случайная величина X попадает в интервал (5;7). Вероятность попадания в заданный интервал найдем по формуле: Р(х1 −λa − e −λb .
P(1 −5*1 − e −5*4 = e −5 − e −20 .

3. Вероятность того, что в результате испытания X ≥ 2 будем находить по формуле: P(a −λa − e −λb при a=2, b=∞.
Р(Х≥2) = P(1 −λ*2 − e −λ*∞ = e −2λ − e −∞ = e −2λ — 0 = e −10 (т.к. предел e −х при х стремящемся к ∞ равен нулю).

4. Находим для показательного распределения:

  • математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2;
  • дисперсию по формуле D(X) = 1/ λ 2 = 1/25 = 0,04;
  • среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2.

Другие статьи по данной теме:

  • назад:Непрерывные случайные величины. Примеры решения задач
  • далее:Нормальный закон распределения непрерывной случайной величины

Список использованных источников

  1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике / М. — "Высшая школа", 2004;
  2. Лисьев В.П. Теория вероятностей и математическая статистика: Учебное пособие/ Московский государственный университет экономики, статистики и информатики. – М., 2006;
  3. Семёнычев В. К. Теория вероятности и математическая статистика: Лекции /Самара, 2007;
  4. Теория вероятностей: контрольные работы и метод. указания для студентов / сост. Л.В. Рудная и др. / УрГЭУ — Екатеринбург, 2008.

2012-2019 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

На странице Непрерывная случайная величина мы разобрали примеры решений для произвольно заданных законов распределения (многочлены, логарифмы и т.п.). Здесь же мы разберем примеры только для одного типа СВ — распределенных по показательному (или экспоненциальному) закону.

Плотность распределения величины $X$ с экспоненциальным законом распределения задается формулой:

Функция распределения величины $X$:

Здесь $lambda$ — единственный параметр данного распределения, полностью определяющий его свойства. В частности, числовые характеристики выражаются через этот параметр: $M(X)=1/lambda$, $D(X)=1/lambda^2$.

Экспоненциальное распределение моделирует время между двумя последовательными свершениями события, а параметр $lambda$ описываетс среднее число наступлений события в единицу времени. Обычно с помощью этого закона описывают: продолжительность обслуживания покупателя, время жизни оборудования до отказа, промежуток времени между поломками и т.п.

В этом разделе мы приведем разные примеры задач с полным решением, где используются показательно распределенные случайные величины.

Примеры решений

Задача 1. Среднее время безотказной работы прибора равно 80 часов. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:
а) выражение его плотности вероятности и функции распределения;
б) вероятность того, что в течение 100 часов прибор не выйдет из строя.

Задача 2. Известно, что время работы прибора до первого отказа подчиняется показательному распределению со средним значением 1 год. Какова вероятность, что до первого отказа пройдет не менее 2 лет?

Задача 3. Установлено, что время ремонта телевизоров есть случайная величина $X$, распределенная по показательному закону с параметром $lambda=1/3$ (1/день). Определить вероятность того, что на ремонт телевизора потребуется не менее 5 дней.

Задача 4. Время в годах безотказной работы прибора подчинено показательному закону, т.е. плотность распределения этой случайной величины такова: $f(t)=2e^<-2t>$ при $tge 0$ и $f(t)=0$ при $tlt 0$.
1) Найти формулу функции распределения этой случайной величины.
2) Определить вероятность того, что прибор проработает не более года.
3) Определить вероятность того, что прибор безотказно проработает 3 года.
4) Определить среднее ожидаемое время безотказной работы прибора.

Задача 5. Предполагая, что случайное время обслуживания абонента службой «09» распределено по показательному закону и средняя продолжительность обслуживания составляет 1,5 минуты, найдите вероятность того, что абонент будет обслужен более, чем за 2 минуты.

Задача 6. Длительность телефонного разговора подчиняется показательному закону. Найти среднюю длительность разговора, если вероятность того, что разговор продлится более 5 минут, равна 0,4.

Задача 7. Случайная величина задана плотностью распределения $p(x)=ce^<-3x>$ при $x gt 0$, и ноль в остальных случаях. Найти постоянную $c$, математическое ожидание, дисперсию и среднее квадратическое отклонение.

Задача 8. Непрерывная случайная величина $xi$ распределена по показательному закону с параметром $lambda$, равному номеру варианта 9. Найти плотность распределения случайной величины $xi$, функцию распределения, построить графики этих функций. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение случайной величины $xi$ и вероятность того, что $xi$ принимает значения, меньшие своего математического ожидания.

Задача 9. Случайная величина $xi$ распределена по показательному закону с параметром 2. Найти $M_<xi>$, $D_<xi>$ вероятность попадания $xi$ в интервал $(-1;2)$. Нарисовать графики плотности распределения и функции распределения $xi$.

Задача 10. Известно, что $Х$ распределено по экспоненциальному закону $Exp(lambda)$. Найдите вероятность события $|Х — МХ | lt 3sigma$ ("правило $3sigma$" для показательного распределения).

Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

Найдем вероятность попадания в интервал (а, b) непрерывной случайной величины X, которая распределена по показательному закону, заданному функцией распределения

Используем формулу (см. гл. 10, § 2, следствие 1)

Учитывая, что F(a) = 1 — е

Значения функции е

х находят по таблице.

Пример. Непрерывная случайная величина X распределена но показательному закону

Найти вероятность того, что в результате испытания X попадает в интервал (0,3; 1).

Р е ш е н и е. По условию, К = 2. Воспользуемся формулой (*):

Пусть непрерывная случайная величина X распределена по показательному закону

Найдем математическое ожидание (см. гл. 12, § 1):

Интегрируя по частям, получим

Таким образом, математическое ож идание показательного распределения равно обратной величине параметра X.

Найдем дисперсию (см. гл. 12, § 1):

Интегрируя но частям, получим Следовательно,

Найдем среднее квадратическое отклонение, для чего извлечем квадратный корень из дисперсии:

Сравнивая (*) и (**), заключаем, что

т.е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Пример. Непрерывная случайная величинах распределена по показательному закону

Найти математическое ожидание, среднее квадратическое отклонение и дисперсию X.

Решение. По условию, X = 5. Следовательно,

Замечание 1. Пусть i ia практике изучается показатель! ю распределе1i- ная случайная величина, причем параметр Я неизвестен. Если математическое ожидание также неизвестно, то находят его оценку (приближенное значение), в качестве которой принимают выборочную среднюю х (см. гл. 16, § 5). Тогда приближенное значение параметра X находят с помощью равенства

Замечание 2. Допустим, имеются основания предположить, что изучаемая на практике случайная величина имеет показательное распределение. Для того чтобы проверить эту гипотезу, находят оценки математического ожидания и среднего квадратического отклонения, т.е. находят выборочную среднюю и выборочное среднее квадратическое отклонение (см. гл. 16, § 5, 9). Математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой, поэтому их оценки должны различаться незначительно. Если оценки окажутся близкими одна к другой, то данные наблюдений подтверждают гипотезу о показательном распределении изучаемой величины; если же оценки различаются существенно, то гипотезу следует отвергнуть.

Показательное распределение широко применяется в приложениях, в частности в теории надежности, одним из основных понятий которой является функция надежности.