Векторная диаграмма токов и напряжений для трехфазной

Векторная диаграмма — способ изображения переменных напряжений и токов с помощью векторов.

Векторная диаграмма трехфазной системы ЭДС и график ЭДС фаз А, B и С:

Векторная диаграмма трехфазной симметричной системы ЭДС:

Векторная диаграмма напряжений симметричной нагрузки, соединенной звездой:

Построение диаграммы напряжений симметричной нагрузки, соединенной звездой:

Векторная диаграмма токов активной несимметричной нагрузки, соединенной звездой:

Построение векторной диаграммы для несимметричной нагрузки при обрыве нейтрального провода:

Несимметричная нагрузка при обрыве нейтрального провода:

Построение диаграммы для несимметричной нагрузки. Звезда без нейтрального провода:

Векторная диаграмма симметричной нагрузки, соединенной звездой:

Векторные диаграммы напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником (несимметричная нагрузка):

Векторная диаграмма напряжений и токов несимметричной нагрузки, соединенной треугольником:

Векторная диаграмма — способ изображения переменных напряжений и токов с помощью векторов.

Векторная диаграмма трехфазной системы ЭДС и график ЭДС фаз А, B и С:

Векторная диаграмма трехфазной симметричной системы ЭДС:

Векторная диаграмма напряжений симметричной нагрузки, соединенной звездой:

Построение диаграммы напряжений симметричной нагрузки, соединенной звездой:

Векторная диаграмма токов активной несимметричной нагрузки, соединенной звездой:

Построение векторной диаграммы для несимметричной нагрузки при обрыве нейтрального провода:

Несимметричная нагрузка при обрыве нейтрального провода:

Построение диаграммы для несимметричной нагрузки. Звезда без нейтрального провода:

Векторная диаграмма симметричной нагрузки, соединенной звездой:

Векторные диаграммы напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником (несимметричная нагрузка):

Векторная диаграмма напряжений и токов несимметричной нагрузки, соединенной треугольником:

Несимметричные режимы в простейших характерных случаях (короткое замыкание и холостой ход) могут быть проанализированы на основе построения векторных диаграмм.

Читайте также:  Жесткий диск из микро сд

Рассмотрим режимы обрыва и короткого замыкания фазы при соединении в звезду для трех- и четырехпроводной систем. При этом будем проводить сопоставление с симметричным режимом работы цепи, фазные напряжения и токи в которой будут базовыми. Для этой цепи (см. рис.1,а) векторная диаграмма токов и напряжений приведена на рис. 1,б (принято, что нагрузка носит активно-индуктивный характер). Здесь

При обрыве фазы А нагрузки приходим к векторной диаграмме на рис. 2.

.

При коротком замыкании фазы А (трехпроводная система) имеет место векторная диаграмма на рис. 3. Из нее вытекает: ; ; ; ; .

При обрыве фазы А в четырехпроводной системе (нейтральный провод на рис. 1,а показан пунктиром, а вектор тока – пунктиром на рис. 1,б) ; ; .

Симметричный трехфазный приемник при соединении в треугольник и соответствующая этому случаю векторная диаграмма напряжений и токов приведены на рис. 4.

Здесь при том же способе соединения фаз генератора ; ; ; ; ; .

При обрыве провода в фазе А-В нагрузки, как это видно из схемы на рис. 5, ; , при этом сами токи и в силу автономности режима работы фаз при соединении нагрузки в треугольник такие же, как и в цепи на рис. 4,а. Таким образом,
; ; .

Цепь при обрыве линейного провода А-А’ и соответствующая этому случаю векторная диаграмма приведены на рис.6.

; ; .

Мощность в трехфазных цепях

Мгновенная мощность трехфазного источника энергии равна сумме мгновенных мощностей его фаз:

.

Активная мощность генератора, определяемая как среднее за период значение мгновенной мощности, равна

.

Соответственно активная мощность трехфазного приемника с учетом потерь в сопротивлении нейтрального провода

,

.

Суммарная активная мощность симметричной трехфазной системы

. (1)

Учитывая, что в симметричном режиме для звезды имеют место соотношения

и для треугольника –

Читайте также:  Как включить местоположение на самсунге

на основании (1) для обоих способов соединения фаз получаем

,

где j – угол сдвига между фазными напряжением и током.

Докажем теперь указанное ранее свойство уравновешенности двухфазной системы Тесла и симметричной трехфазной системы.

1. Двухфазная система Тесла

В соответствии с рис. 7

(2)
. (3)

.

Таким образом, суммарная мгновенная мощность фаз есть величина постоянная, равная суммарной активной мощности источника.

2. Симметричная трехфазная цепь

,

т.е. и для симметричной трехфазной цепи свойство уравновешенности доказано.

Измерение мощности в трехфазных цепях

Ниже рассмотрены практические схемы включения ваттметров для измерения мощности в трехфазных цепях.

1. Четырехпроводная система, несимметричный режим.

Представленная на рис. 8 схема называется схемой трех ваттметров.

Суммарная активная мощность цепи определяется как сумма показаний трех ваттметров

.

2. Четырехпроводная система, симметричный режим.

Если режим работы цепи симметричный, то для определения суммарной активной мощности достаточно ограничиться одним ваттметром (любым), включаемым по схеме на рис. 8. Тогда, например, при включении прибора в фазу А,

. (4)

3. Трехпроводная система, симметричный режим.

При отсутствии доступа к нейтральной точке последняя создается искусственно с помощью включения трех дополнительных резисторов по схеме «звезда», как показано на рис. 9 – схема ваттметра с искусственной нейтральной точкой. При этом необходимо выполнение условия , где – собственное сопротивление обмотки ваттметра. Тогда суммарная активная мощность трехфазной системы определяется согласно (4).

4. Трехпроводная система, симметричный режим; измерение реактивной мощности.

С помощью одного ваттметра при симметричном режиме работы цепи можно измерить ее реактивную мощность. В этом случае схема включения ваттметра будет иметь вид по рис. 10,а. Согласно векторной диаграмме на рис. 10,б измеряемая прибором мощность

Таким образом, суммарная реактивная мощность

5. Трехпроводная система, несимметричный режим.

Читайте также:  Ваш компьютер необходимо восстановить код ошибки 0xc0000225

Представленная на рис. 11 схема называется схемой двух ваттметров. В ней сумма показаний приборов равна суммарной активной мощности цепи.

Действительно, показания приборов в данной схеме:

.

В заключение отметим, что если в схеме на рис. 11 имеет место симметричный режим работы, то на основании показаний приборов можно определить суммарную реактивную мощность цепи

. (5)
  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

    В симметричной трехпроводной цепи произошел обрыв фазы. Что покажет вольтметр, включенный между найтральными точками источника и приемника?

Ответ: .

Во сколько раз мощность в цепи на рис. 6,а меньше мощности в цепи на рис. 4,а?

Ответ: в два раза.

В цепи на рис. 10,а симметричная нагрузка составлена из резистивных элементов. Что покажет ваттметр?

Ответ: .

В цепи на рис. 10,а симметричная нагрузка с фазным сопротивлением соединена в звезду. Линейное напряжение .

Определить показание ваттметра.

Ответ: .

В цепи на рис. 11 нагрузкой служат два одинаковых конденсатора с ХС=100 Ом, включенные между линейными проводами А и В, В и С соответственно. Линейное напряжение .

Определить показания ваттметров.

Ответ: .

  • На основе построения векторной диаграммы токов и напряжений для симметричного режима работы цепи на рис. 11 доказать соотношение (5).
  • Ссылка на основную публикацию
    Adblock detector