Вектор умножить на ноль

В этой статье мы рассмотрим операции, которые можно производить с векторами на плоскости и в пространстве. Далее мы перечислим свойства операций над векторами и обоснуем их с помощью геометрических простроений. Также покажем применение свойств операций над векторами при упрощении выражений, содержащих векторы.

Для более качественного усвоения материала рекомендуем освежить в памяти понятия, данные в статье векторы – основные определения.

Навигация по странице.

Операция сложения двух векторов – правило треугольника.

Покажем как происходит сложение двух векторов.

Сложение векторов и происходит так: от произвольной точки A откладывается вектор , равный , далее от точки B откладываеься вектор , равный , и вектор представляет собой сумму векторов и . Такой способ сложения двух векторов называется правилом треугольника.

Проиллюстрируем сложение не коллинеарных векторов на плоскости по правилу треугольника.

А на чертеже ниже показано сложение сонаправленных и противоположно направленных векторов.

Сложение нескольких векторов – правило многоугольника.

Основываясь на рассмотренной операции сложения двух векторов, мы можем сложить три вектора и более. В этом случае складываются первые два вектора, к полученному результату прибавляется третий вектор, к получившемуся прибавляется четвертый и так далее.

Сложение нескольких векторов выполняется следующим построением. От произвольной точки А плоскости или пространства откладывается вектор, равный первому слагаемому, от его конца откладывается вектор, равный второму слагаемому, от его конца откладывается третье слагаемое, и так далее. Пусть точка B – это конец последнего отложенного вектора. Суммой всех этих векторов будет вектор .

Сложение нескольких векторов на плоскости таким способом называется правилом многоугольника. Приведем иллюстрацию правила многоугольника.

Абсолютно аналогично производится сложение нескольких векторов в пространстве.

Операция умножения вектора на число.

Сейчас разберемся как происходит умножение вектора на число.

Умножение вектора на число k соответствует растяжению вектора в k раз при k > 1 или сжатию в раз при 0 , при k = 1 вектор остается прежним (для отрицательных k еще изменяется направление на противоположное). Если произвольный вектор умножить на ноль, то получим нулевой вектор. Произведение нулевого вектора и произвольного числа есть нулевой вектор.

К примеру, при умножении вектора на число 2 нам следует вдвое увеличить его длину и сохранить направление, а при умножении вектора на минус одну треть следует уменьшить его длину втрое и изменить направление на противоположное. Приведем для наглядности иллюстрацию этого случая.

Свойства операций над векторами.

Итак, мы определили операцию сложения векторов и операцию умножения вектора на число. При этом для любых векторов и произвольных действительных чисел можно при помощи геометрических построений обосновать следующие свойства операций над векторами. Некоторые из них очевидны.

  1. Свойство коммутативности .
  2. Свойство ассоциативности сложения .
  3. Существует нейтральный элемент по сложению, которым является нулевой вектор , и . Это свойство очевидно.
  4. Для любого ненулевого вектора существует противоположный вектор и верно равенство . Это свойство очевидно без иллюстрации.
  5. Сочетательное свойство умножения . К примеру, растяжение вектора в 6 раз можно произвести, если сначала его растянуть вдвое и полученный вектор растянуть еще втрое. Аналогичного результата можно добиться, например, сжав вектор вдвое, а полученный вектор растянуть в 12 раз.
  6. Первое распределительное свойство . Это свойство достаточно очевидно.
  7. Второе распределительное свойство . Это свойство справедливо в силу подобия треугольников, изображенных ниже.
  8. Нейтральным числом по умножению является единица, то есть, . При умножении вектора на единицу с ним не производится никаких геометрических преобразований.
Читайте также:  Игры для девочек популярные бесплатно

Рассмотренные свойства дают нам возможность преобразовывать векторные выражения.

Свойства коммутативности и ассоциативности операции сложения векторов позволяют складывать векторы в произвольном порядке.

Операции вычитания векторов как таковой нет, так как разность векторов и есть сумма векторов и .

Учитывая рассмотренные свойства операций над векторами, мы можем в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, выполнять преобразования так же как и в числовых выражениях.

Разберем на примере.

Упростите выражение, содержащее векторы .

Если воспользоваться вторым распределительным свойством операции умножения вектора на число, то получим .

В силу сочетательного свойства умножения имеем .

Свойство коммутативности операции сложения векторов позволяет поменять местами второе и третье слагаемые , а по первому распределительному свойству имеем .

А теперь запишем кратко: .

.

Произведением вектора x на число β (x≠0, β≠0) называется вектор, модуль которого равен |x||β| и который направлен в ту же сторону, что и вектор x, если β>0, и в противоположную, если β 1

На рисунке Рис. 1 вектор x умножен на число 1.5. Полученный вектор y’ имеет то же направление, что и x т.к 1.5>0, и имеет длину 1.5 раз превысшающее длину x.

Вектор q имеет противополжное к p направление, т.к. вектор p умножено на отрицательное число -0.5, и имеет длину 2 раза меньше длины p.

Рассмотрим процесс умножения вектора на число.

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Пусть имеется вектор

где координаты вектора x, и пусть β некоторое число. Тогда

То есть для умножения вектора на число достаточно умножить каждый координат данного вектора на это число.

На рисунке Рис. 1 вектор x имеет координаты x=(6,4). Для умножения вектора x на число 1.5, умножим каждый координат вектора x на число 1.5:

Вариант 2. Начальные точки векторов произвольные.

Пусть имеется вектор x, с начальной точкой и конечной точкой . Умножим вектор x на число β. Для этого проще всего параллельно переместить вектор x на начало координат, умножить на число, после чего параллельно переместить началную точку полученного вектора на точку A.

Переместим вектор x на начало координат. Получим новый вектор x’ с начальными и конечными точками:

Параллельно переместив начальную точку вектора x’ на точку A, получим вектор x” с начальными и конечными точками:

На рисунке Рис. 1 вектор p= AB имеет координаты A(2,3) и B(8,1). Для умножения вектора p на число -0.5, сначала переместим параллельно вектор p так, чтобы начальная точка вектора p совпала с началом координат. Получим вектор p’= A’B’ с координатами A’(0,0) и B’(8-2, 1-3)=B’(6,-2). Умножим вектор p’ с числом -0.5:

Читайте также:  Как вернуть спрятанную папку

Перемесив начальную точку вектора q’ на точку A, получим вектор q= AE, где точка E имеет координаты:

Операция умножения вектора на число обладает следующими свойствами:

1.β(x+y)=βx+βy (дистрибутивность относительно сложения векторов).

2. (α+β)a=αa+βa (дистрибутивность относительно сложения чисел).

3. α(βa)=(αβ)a (ассоциативность).

4. 1·a=a (умножение на единицу).

Примеры умножения вектора на число

Пример 1. Умножить вектор y=(3,5,-6) на число 2.5.

Для умножения вектора y на число 2.5, просто умножаем каждый координат вектора y на данное число:

Пример 2. Умножить вектор x= AB на число 3 , где A(2,2), B(7,6).

Переместим вектор AB на начало координат. Начальное и конечное точки перемещенного вектора будут:

Умножив полученный вектор на число 3, изменяется расположение конечной точки B’:

.

Переместив вектор на точку A, получим вектор 3·x, со следующими начальной и конечной точками:

Прежде чем приступить к тематике статьи, напомним основные понятия.

Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.

Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.

Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.

Сложение двух векторов

Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки undefined отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.

Геометрически сложение векторов выглядит так:

– для неколлинеарных векторов:

– для коллинеарных (сонаправленных или противоположнонаправленных) векторов:

Сложение нескольких векторов

Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.

Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .

Геометрически оно выглядит следующим образом:

Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и – b → .

Умножение вектора на число

Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
– если k > 1 , то это число приведет к растяжению вектора в k раз;
– если 0 k 1 , то это число приведет к сжатию вектора в 1 k раз;
– если k 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
– если k = 1 , то вектор остается прежним;
– если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.

Читайте также:  Восстановление удаленных сообщений whatsapp iphone

Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = – 1 3 .

Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:

Свойства операций над векторами

Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.

Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .

  1. Свойство коммутативности: a ⇀ + b → = b → + a → .
  2. Свойство ассоциативности: ( a → + b → ) + c → = a → + ( b → + c → ) .
  3. Свойство использования нейтрального элемента по сложению (нулевой вектор 0 → ⃗). Это очевидное свойство: a → + 0 → = a →
  4. Свойство использования нейтрального элемента по умножению (число, равное единице): 1 · a → = a → . Это очевидное свойство, не предполагающее никаких геометрических преобразований.
  5. Любой ненулевой вектор a → имеет противоположный вектор – a → и верным является равенство: a → + ( – a → ) = 0 → . Указанное свойство – очевидное.
  6. Сочетательное свойство операции умножения: ( λ · µ ) · a → = λ · ( µ · a → ) . Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
  7. Первое распределительное свойство (очевидно): ( λ + µ ) · a → = λ · a → + µ · a → .
  8. Второе распределительное свойство: λ · ( a → + b → ) = λ · a → + λ · b → .
    Геометрически это свойство определяется подобием треугольников:

Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.

Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.

Задача: упростить выражение a → – 2 · ( b → + 3 · a → )
Решение
– используя второе распределительное свойство, получим: a → – 2 · ( b → + 3 · a → ) = a → – 2 · b → – 2 · ( 3 · a → )
– задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → – 2 · b → – 2 · ( 3 · a → ) = a → – 2 · b → – ( 2 · 3 ) · a → = a → – 2 · b → – 6 · a →
– используя свойство коммутативности, меняем местами слагаемые: a → – 2 · b → – 6 · a → = a → – 6 · a → – 2 · b →
– затем по первому распределительному свойству получаем: a → – 6 · a → – 2 · b → = ( 1 – 6 ) · a → – 2 · b → = – 5 · a → – 2 · b → Краткая запись решения будет выглядеть так: a → – 2 · ( b → + 3 · a → ) = a → – 2 · b → – 2 · 3 · a → = 5 · a → – 2 · b →
Ответ: a → – 2 · ( b → + 3 · a → ) = – 5 · a → – 2 · b →

Ссылка на основную публикацию
Adblock detector