В системе рекурсивных уравнений

Система независимых уравнений

Понятие и виды СРУ

Тема 4. Системы регрессионных уравнений (группа 3.3Б)

Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточно для описания таких систем и объяснения механизма функционирования. При использовании отдельных уравнений регрессии, в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменение во всей системе взаимосвязанных признаков. Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной.

Система независимых уравнений – система, в которой каждая зависимая переменная y рассматривается как функция одного и того же набора факторов x то есть система вида[7]:

Система рекурсивных уравнений – система, в которой зависимая переменная одного уравнения выступает в виде фактора x в другом уравнении, то есть система вида:

Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +εn.

Система взаимозависимых уравнений (система совместных одновременных уравнений) – система в которой одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях – в правую, то есть система вида: Y1= b12y2 + b13y3 +…+ b1nyn + a11x1 + a12x2 +…+ a1mxm +ε1; Y2= b21y1 +b23y3 +…+ b2nyn + a21x1 + a22x2 +…+ a2mxm +ε2 ;Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +εn.

Приведенная форма модели – система линейных функций эндогенных переменных от экзогенных:

Y1=δ11×1 +δ12×2 +…+ δ1mxm;

Y2=δ21×1 +δ 22×2 +…+ δ2mxm;

Yn=δn1x1 + δn2x2 +…+ δnmxm,

где δij – коэффициенты приведенной формы модели.

Сложные системы и процессы в них, как правило, описываются не одним уравнением, а системой уравнений. При этом между переменными имеются связи, так что по крайней мере некоторые из таких связей между переменными требуют корректировки МНК для адекватного оценивания параметров модели (параметров системы уравнений). Удобно сначала рассмотреть оценивание системы, в которой уравнения связаны только благодаря корреляции между ошибками (остатками) в разных уравнениях системы. Такая система называется системой внешне несвязанных между собой уравнений

В такой системе каждая зависимая переменная рассматривается как функция одного и того же набора факторов; правда, этот набор факторов вовсе не обязан быть представлен весь целиком во всех уравнениях системы, а может варьировать от одного уравнения к другому. Можно рассматривать каждое уравнение такой системы независимо от остальных и применять для оценивания его параметров МНК. Но в практически важных задачах описываемые отдельными уравнениями зависимости представляют объекты и взаимодействие между этими объектами, которые находятся в одной общей среде. Наличие этой единой экономической среды обусловливает взаимосвязи между объектами и соответствующее взаимодействие, за что отвечают в данном случае остатки (корреляция между ошибками). Поэтому объединение уравнений в систему и применение обобщенного метода наименьших квадратов (ОМНК) для ее решения существенно повышает эффективность оценивания параметров уравнений.

Более общей является модель так называемых рекурсивных уравнений, когда зависимая переменная одного уравнения выступает в роли фактора х, оказываясь в правой части другого уравнения системы. При этом каждое последующее уравнение системы (зависимая переменная в правой части этих уравнений) включает в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором их собственных факторов х. Здесь опять каждое уравнение системы может рассматриваться независимо, но тоже эффективнее рассматривать взаимосвязь через остатки и применять ОМНК:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8829 – | 7539 – или читать все.

Читайте также:  Как быстро очистить компьютер от ненужных файлов

В таких системах в одном из уравнений содержится единственная зависимая переменная , которая в следующем уравнении присутствует в качестве факторной переменной. В третье уравнение эти эндогенные переменные из предыдущих уравнений могут быть включены как факторные и т.д.

В данной системе каждое последующее уравнение наряду с факторными переменными включает в качестве факторов все зависимые переменные предшествующих уравнений. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).

3. Система взаимозависимых (одновременных) уравнений

Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые (эндогенные) переменные в одних уравнениях входят в левую часть (т.е. выступают в роли результативных признаков), а в других уравнениях – в правую часть системы (т.е. выступают в качестве факторных переменных). Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных.

Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений).

Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т. е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.

Экзогенными, например, всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.

Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.

В эконометрике эта система уравнений также называется структурной формой модели (СФМ).

Система одновременных уравнений в структурной форме и при отсутствии лаговых переменных может быть записана:

Кроме регрессионных уравнений (они называются также поведенческими уравнениями) модель может содержать тождества, которые представляют собой алгебраические соотношения между эндогенными переменными. Тождества позволяют исключать некоторые эндогенные переменные и рассматривать систему регрессионных уравнений меньшей размерности Параметры модели в структурной форме называют ее структурными коэффициентами [6, C.321].

Система одновременных уравнений в структурной форме позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.

В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим, т.к. нарушаются предпосылки, лежащие в основе МНК (например, предпосылка о некоррелированности факторных переменных с остатками). Эндогенные переменные являются случайными величинами, зависящими от . В том случае, когда эндогенная переменная входит в некоторое уравнение как факторная происходит нарушение названной предпосылки МНК. Таким образом, для нахождения структурных коэффициентов традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.

При правильной спецификации модели задача идентификация системы уравнений сводится к корректной и однозначной оценке ее коэффициентов. Непосредственная оценка коэффициентов уравнения возможна лишь в системах внешне не связанных уравнений, для которых выполняются основные предпосылки построения регрессионной модели, в частности, условие некоррелированности факторных переменных с остатками.

Читайте также:  Гофрированная бумага как называется по другому

В рекурсивных системах всегда возможно избавление от проблемы коррелированности остатков с факторными переменными путем подстановки в качестве значений факторных переменных не фактических, а модельных значений эндогенных переменных, выступающих в качестве факторных переменных. Процесс идентификации осуществляется следующим образом [6, C.330]:

  • 1. Идентифицируется уравнение, в котором в качестве факторных не содержатся эндогенные переменные. Находится расчетное значение эндогенной переменной этого уравнения.
  • 2. Рассматривается следующее уравнение, в котором в качестве факторной включена эндогенная переменная, найденная на предыдущем шаге. Модельные (расчетные) значения этой эндогенной переменной обеспечивают возможность идентификации этого уравнения и т.д.

В системе уравнений в приведенной форме проблема коррелированности факторных переменных с отклонениями не возникает, так как в каждом уравнении в качестве факторных переменных используются лишь предопределенные переменные. Таким образом, при выполнении других предпосылок рекурсивная система всегда идентифицируема.

При рассмотрении системы одновременных уравнений возникает проблема идентификации.

Идентификация в данном случае означает определение возможности однозначного пересчета коэффициентов системы в приведенной форме в структурные коэффициенты.

Чтобы получить единственно возможное решение необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой их взаимосвязи с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Уменьшение числа структурных коэффициентов модели возможно и другими путями: например, путем приравнивания некоторых коэффициентов друг к другу, т.е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково и пр.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

  • · идентифицируемые;
  • · неидентифицируемые;
  • · сверхидентифицируемые.

Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели.

Модель неидентифицируема, если число коэффициентов приведенной модели меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число коэффициентов приведенной модели больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов нахождения параметров.

Чтобы определить тип структурной модели необходимо каждое ее уравнение проверить на идентифицируемость.

Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель кроме идентифицируемых содержит хотя бы одно сверхидентифицируемое уравнение.

Применение систем эконометрических уравнений

Применение систем эконометрических уравнений представляет собой непростую задачу.

Проблемы здесь происходят из-за ошибок спецификации. Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа. Более совершенными по сравнению со статическими моделями являются динамические модели экономики, которые содержат в правой части лаговые переменные и учитывают тенденцию развития (фактор времени). Значительные трудности создает невыполнение условия независимости факторов, которое в корне нарушается в системах одновременных (взаимозависимых) уравнений [8, C.344].

Использование корреляционно-регрессионного анализа в контексте структурного моделирования — это попытка подойти к выделению и измерению причинных связей переменных. Для этого следует сформулировать гипотезы о структуре влияний и корреляции. Такая система причинных гипотез и соответствующих взаимосвязей изображается графом, вершины которого — это переменные (причины или следствия), а дуги — причинные отношения. Верификация гипотез требует установления соответствия между графом и системой уравнений, описывающей этот граф.

Читайте также:  Девушки брюнетки на аву в контакте

Структурные модели эконометрики представляются системой линейных по отношению к наблюдаемым переменным уравнений. Если алгебраическая система соответствует графу без контуров (петель), то она является рекурсивной системой. Такая система позволяет рекуррентно определять значения входящих в нее переменных. В ней в уравнения для признака включаются все переменные, кроме тех, которые расположены выше него по графу. Соответственно формулировка гипотез в структуре рекуррентной модели довольно проста, при условии использования данных динамики. Рекурсивная система уравнений позволяет определить полные и частные коэффициенты влияния факторов. Коэффициенты полного влияния измеряют значение каждой переменной в структуре. Структурные модели позволяют оценить полное и непосредственное влияние переменных, прогнозировать поведение системы, рассчитывать значения эндогенных переменных.

Если нужно всего лишь уточнить характер связей переменных, то используют метод путевого анализа (путевых коэффициентов). В основе его лежит гипотеза об аддитивном характере (аддитивность и линейность) связей между переменными. К сожалению, применение путевого анализа в социально-экономических исследованиях затруднено тем, что не всегда линейная зависимость удовлетворительно выражает все разнообразие причинно-следственных связей в реальных системах. Значимость результатов анализа определяется правильностью построения максимально связного графа и, соответственно, изоморфной математической модели в виде системы уравнений. В то же время важным достоинством путевого анализа является возможность производить декомпозицию корреляций.

В данной главе мы рассмотрели сущность систем эконометрических уравнений, их применение. Таким образом, понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.

Применение систем эконометрических уравнений представляет собой непростую задачу.

Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа.

Система эконометрических уравнений называется рекурсивной, если возможно упорядочить уравнения системы таким образом, чтобы в правой части первого уравнения присутствовали только экзогенные переменные, в правой части второго уравнения — только экзогенные переменные и Уу в третьем уравнении — экзогенные переменные плюс у у у2 и т.д.

В рекурсивных системах эконометрический анализ каждого уравнения может проводиться независимо от остальных. Как и в случае систем независимых уравнений, оценивание неизвестных параметров проводится обычным методом наименьших квадратов.

Наиболее сложными с точки зрения анализа являются системы уравнений, в которых одни и те же эндогенные переменные одновременно присутствуют в правой части одних уравнений и в левой части других:

Такие системы получили название систем одновременных, совместных или взаимозависимых уравнений [2, 19, 28]. Форма, в которой записана система (5.5), называется структурной формой. Наряду со структурной формой существует другая форма записи систем эконометрических уравнений, называемая приведенной формой. В общем виде приведенная форма записывается следующим образом:

где 8?. — неизвестные параметры, называемые коэффициентами приведенной формы. Приведенная форма позволяет анализировать влияние любой экзогенной переменной на значение любой эндогенной переменной.

Коэффициенты приведенной формы и коэффициенты структурной формы связаны между собой, причем характер этой зависимости нелинейный.

Пример. Рассмотрим простую модель для двух эндогенных и двух экзогенных переменных в структурной форме:

Приведенная форма модели, соответствующая этой системе, имеет вид

Для того чтобы определить вид зависимостей между коэффициентами подставим у2 из первого

уравнения во второе и получим

Теперь подставим ух из первого во второе уравнение и получим

По своему виду приведенная форма представляет собой систему независимых уравнений, и поэтому коэффициенты приведенной формы могут быть оценены методом наименьших квадратов.

Ссылка на основную публикацию
Adblock detector