Двойной модуль как решать

Администратор
Роман

Tel. +380685083397
yukhym.roman@gmail.com
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Как решить простейшее модульное уравнение или уравнение содержащее модуль?

Обычно решение сводится к системе :
Уравнения содержащие модуль

Сразу рассмотрим на примере решение уравнений.

Решите уравнение | x – 6| = 18.

Выражение стоящее под модулем приравниваем к 0:

Отмечаем 6 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.

На интервале (-∞; 6) возьмем число 0 и подставим
0-6=-6 получилось отрицательное число, значит на этом интервале будет знак “ – ”

На интервале (6;+∞) возьмем число 7 и подставим
7-6=1 получилось положительное число, значит на этом интервале будет знак “ + ”

Числовая прямая

Теперь решаем уравнения на каждом интервале.

(-∞; 6) здесь получился знак “ – ”, значит выражение под модулем поменяет знаки на противоположные:

Видно, что -12 лежит на интервале (-∞; 6) следовательно, является корнем уравнения.

(6;+∞) здесь получился знак “ + ”, значит выражение под модулем остается без изменения:

Видно, что 24 лежит на интервале (6;+∞) следовательно, является корнем уравнения.

Решите уравнение | 2x – 5 |- | 4 — x | = -18.

Выражения стоящие под модулем приравниваем к 0:

2x – 5 = 0 и 4 — x = 0
x=2,5 и x=4

Отмечаем x=2,5 и x=4 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.

На интервале (-∞; 2,5) возьмем число 0 и подставим в каждое выражение
2*0-5=-5 получилось отрицательное число, значит на этом интервале будет знак “ – ”
4-0=4 получилось положительное число, значит на этом интервале будет знак “ + ”

На интервале (2,5; 4) возьмем число 3 и подставим в каждое выражение
2*3-5=1 получилось положительное число, значит на этом интервале будет знак “ + ”
4-3=1 получилось положительное число, значит на этом интервале будет знак “ + ”

На интервале (4; +∞) возьмем число 5 и подставим в каждое выражение
2*5-5=5 получилось положительное число, значит на этом интервале будет знак “ + ”
4-5=-1 получилось отрицательное число, значит на этом интервале будет знак “ – ”

Теперь решаем уравнения на каждом интервале.

(-∞; 2,5) здесь получился знак “ – ” у выражения “ 2x – 5 ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 4 — x ”, значит выражение под модулем остается без изменения:

-2x + 5 — ( 4 — x ) = -18
-2x + 5 — 4 + x = -18
x=19
Видно, что 19 не лежит на интервале (-∞; 2,5) следовательно, не является корнем уравнения.

(2,5; 4) здесь получился знак “ + ” у обоих выражений, значит выражения под модулем останутся без изменений:

2x – 5 — ( 4 — x ) = -18
2x – 5 — 4 + x = -18
3x=-9
x=-3

Видно, что -3 лежит на интервале (2,5; 4) следовательно,не является корнем уравнения.

(4; +∞) здесь получился знак “ – ” у выражения “ 4 — x ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 2x – 5 ”, значит выражение под модулем остается без изменения:

2x – 5 — ( — 4 + x ) = -18
2x – 5 + 4 — x = -18
x=-17

Видно, что -17 лежит на интервале (4; +∞) следовательно,не является корнем уравнения.

Ответ: корней нет

Решите уравнение ||x|-3|=15.

Так как в правой части стоит простое число то распишем на два уравнения (раскроем внешний модуль):

Перенесем в обоих уравнениях -3 вправо, получим:

|x|=18
|x|=-12 (модуль не может равняться отрицательному числу, следовательно это уравнение не имеет решений)

Раскрываем модуль |x|=18

Читайте также:  Включил наушники а звук идет через колонки

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Надеюсь, ты уже усвоил тему «Модуль числа» и таким образом уже частично готов к ЕГЭ по математике? 🙂

Если нет, срочно повтори эту тему. А если да, читай дальше.

Решение уравнений с модулем может быть самостоятельной задачей, но часто такие уравнения могут возникнуть при решении уравнений другого типа, например, квадратных.

Вот пример подобной ситуации:

Видно, что в правой части – квадрат числа :

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение.

В таких ситуациях нужно быть предельно осторожным: ведь ты же помнишь простое правило:

Вот и появляется на сцене наш модуль:

Чтобы не теряться в таких случаях, давай разберемся, что из себя представляет решение уравнений с модулем.

Let’s dive right in. (Поехали!)

Решение уравнений с модулем вида |Х| = a

Уравнения такого вида решаем, основываясь на свойствах модуля, которые мы разобрали в теме «Модуль числа» .

Давай разбираться на примерах. Необходимо решить уравнение вида:

Это просто , если больше либо равно нулю, или , если меньше нуля.

То есть можно формализовано записать так:

А если вот такое уравнение:

Эти рассуждения можно было и обойти, вспомнив основное свойство модуля:

Модуль всегда положителен либо равен нулю!

Если обобщить разобранные выше примеры, то можно написать общее правило для решения уравнений вида :

Попробуем применить это правило для такого уравнения:

Выражение под знаком модуля изменилось, но на логике рассуждений это не отражается, поэтому давай решать уравнение, применяя наше правило:

В нашем примере под " " подразумевается " ", а значение . Зная это, получаем:

А если уравнение имеет вид:

Что-то меняется в рассуждениях? Конечно, нет! Ну, тогда давай решать его!

Уловил? Закрепим на примерах.

Примеры для самостоятельной работы

Решения примеров для самостоятельной работы

Точно так же как и в предыдущем примере уравнения с модулем могут возникнуть при решении уравнений другого типа, например, иррациональных.

Вот пример подобной ситуации:

Мы могли бы раскрыть скобки, перенести все в одну сторону, привести подобные и решить обычное квадратное уравнение (например, через дискриминант).

Но здесь удобнее поступить по-другому!

Заметим, что в правой части уравнения – формула сокращённого умножения квадрат суммы:

Тогда уравнение станет таким:

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение.

Будь предельно осторожным: опять вспоминаем простое правило: ?

И опять на сцене наш модуль:

Чтобы не теряться в таких случаях, научимся решать уравнения с модулем (все три типа).

Три типа уравнений с модулем

1. Уравнения вида |X| = |a|

Большинство уравнений с модулем можно решить, используя одно только определение модуля. Например:

Решите уравнение:

Это просто , если , или , если .

Ответ:

Другой пример:

И правда, вспомним свойство №1:

, то есть модуль всегда неотрицателен.

Итак, мы выработали общее правило решения простейших уравнений с модулем:

Ещё примеры (как обычно, пробуй решить их сам, потом смотри решения):

Решения:​

2. Уравнения вида |X| = |Y|

Если начнём раскрывать модули по определению, натолкнёмся на множество проверок: какое число больше нуля, какое меньше; в итоге получим большую совокупность, которая затем упростится.

Но можно сделать так, чтобы сразу было всё кратко.

Для этого вспомним свойство модуля №7:

С помощью этого свойства можем избавляться от модулей:

Пример:

Решение:

Реши самостоятельно:

Ответы:

3. Уравнения вида |X| = Y

Отличие от первого типа уравнений в том, что в правой части тоже переменная. А она может быть как положительной, так и отрицательной.

Читайте также:  Говорят неправильно набран номер что это значит

Поэтому в её неотрицательности нужно специально убедиться, ведь модуль не может равняться отрицательному числу (свойство №1):

Пример:

Решение:

Если пропустить проверку на неотрицательность правой части, можно ошибочно написать в ответе сторонние корни, и таким образом потерять баллы. Давайте проверим: действительно ли надо выбросить корень ? Подставим его в исходное уравнение :

Теперь задачи для самостоятельного решения:

Ответы:

Решим квадратные уравнения и . Дискриминант у них одинаковый:

Итак, исходное уравнение равносильно системе

Ответ:

Метод интервалов в задачах с модулем

Пример:

Решение:

Рассмотрим первый модуль . По определению он раскрывается «с плюсом» (то есть выражение под модулем не меняется), если , и «с минусом» (то есть все знаки меняются на противоположные), если :

Аналогично и со вторым:

Проблема только в том, что теперь нам нужно рассмотреть очень много вариантов: по варианта для каждого модуля, итого четыре разных, но похожих друг на друга, уравнения.

Если модулей будет не два, а три, получится уже уравнений!

Можно ли как-то сократить количество вариантов?

Да, можно – ведь не все условия могут выполняться одновременно: и противоречат друг другу.

Поэтому нет смысла раскрывать второй модуль «с плюсом», если первый раскрыт «с минусом». Значит, здесь у нас на одно уравнение меньше.

Теперь систематизируем то, что мы только что выяснили, и разработаем последовательность действий в таких примерах:

1. Определим корни подмодульных выражений – такие , при которых выражения равны нулю:

2. Отметим корни выражений под модулями на числовой оси:

3. Подпишем у каждого из получившихся интервалов, какой знак принимает каждое из наших подмодульных выражений.

4. Для каждого интервала запишем и решим уравнение. Важно проследить, чтобы ответы соответствовали интервалу!

I. . Здесь оба модуля раскрываем «с минусом»:

-3"> – этот корень сторонний.

II. . Здесь первый модуль раскрываем «с плюсом», а второй – «с минусом»:

– этот корень попадает в «свой» интервал, значит, он подходит.

III. . Здесь оба модуля раскрываем «с плюсом»:

– этот корень тоже является решением.

Проверим полученные корни:

I. (корень и правда сторонний).

II. .

III. .

Ответ:

Примеры:

Решения:

Модуль в модуле

В некоторых уравнениях встречается «вложенный» модуль, то есть модуль какого-то выражения является частью подмодульного выражения, например:

Что делать в таком случае? Все банально: раскрывать модули. Но раскрывать их нужно по очереди. Какой будем раскрывать первым?

А это зависит от того, каким методом ты хочешь решить это уравнение. Рассмотрим два возможных варианта:

I. Данное уравнение является уравнением вида

В этом случае первый способ решения будет стандартным для такого типа:

– подмодульное выражение – в нашем примере это , то есть:

Получили два элементарных уравнения такого же типа, то есть:

Эти четыре числа и будут ответом, можешь проверить их подстановкой в исходное уравнение.

II. Есть ещё один, более универсальный способ, который подойдёт для любых задач, не попадающих ни в какой из стандартных типов.

Что это за метод?

Метод интервалов.

В этом случае нужно раскрывать модули начиная с самых «глубоких», то есть «внутренних». В нашем случае внутренним будет модуль, выделенный красным цветом:

Чтобы раскрыть его, надо рассмотреть 2 случая: и , то есть уравнение распадается на два уравнения:

Краткое изложение статьи и основные формулы

Уравнения с модулем делятся на три вида, каждый вид имеет свой подход к решению:

1. Уравнения вида

2. Уравнения вида .

3. Уравнения вида .

Теперь тебе слово.

Как тебе. про уравнения с модулем? Легкотня! )

Напиши внизу в комментариях помогла тебе наша статья или нет.

Расскажи о своем опыте решения уравнений с модулем, если он у тебя был.

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях. Мы читаем все.

И удачи на экзаменах!

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Читайте также:  Замок капота в разрыв штатного троса

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это – не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник "YouClever" (который ты сейчас читаешь) и решебник и программу подготовки "100gia".

Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Комментарии

Спасибо огромное,повторил,сдал на отлично,Алексею нобелевскую по математике)

Марк, наши поздравления с отличной сдачей. Премию Алексею передам 🙂

нобелевские по математике не присуждаются .

Наградим поощрительной грамотой )

Добрый день! В пункте №3 Уравнения вида ∣x∣=y во втором примере: −2∣x+4∣=3−x, откуда дальше в решении появляется коэффициент 4 в правой части? −2∣x+4∣=3−4x Спасибо за ответ и Ваш чудесный и полезный сайт!

Роман, привет! Спасибо за замечания и слова благодарности. Очень ценно. Алексей Шевчук проверит и поправит, если там ошибка. Еще раз спасибо!

Роман, спасибо. Это была опечатка в условии.

А как решить такой пример 7|2-4|+4*-8

помогите,пожалуйста,решить уравнение дробь в модуле :числитель 13,296 знаменатель 3.71 минус модуль 0,4х минус4,7 модуль закрывается,далее от дроби минус 2,2 умножить на 1,4.Еще раз обращаю внимание: сама дробь в модуле И равно 8 Пожалуйста помогите

Здравствуйте, помогите пожалуйста решить такое уравнение |x-1|=2x+3

Спасибо большое . Сайт замечательный ,я смогла разобраться и понять материал . Создателям огромное спасибо ,их работа заслуживает высокого внимания . Перейду на родной язык: Danke schön. Ihre Arbeit ist wirklich wunderschön. Danke ein male.

Gern geschehen, Dascha! Bitte. International Mathematical Unterstützung zu Ihren Diensten ))

как по графику кусочно заданной функции записать уравнение, содержащее несколько модулей вида y=a|x|+b|x-8|+x+c? №23 ОГЭ систему составила y= -2x-4 . x 8 , а как перейти к другой записи уравнения

Очень хорошо разобрано и объяснено. И за советы спасибо)

Лера, жму руку! Спасибо за теплые слова. Удачи на всех экзаменах!

Решите уравнение ∣x∣=−3. разве может модуль равняться отрицательному числу

Джозеф, нет, не может, и в этом примере поясняется, почему.

Помогите решить |х|+|y-x|=2 Нужно расскрыть модуль и по получившимся ответам которых 4 как сказал препод

Виталий, в самом начале раздела "Метод интервалов в задачах с модулем" показано, как раскрывать сумму модулей. Принципиально это ничем не отличается от раскрытия одного модуля, просто будет больше комбинаций – 4 штуки, по 2 на каждый модуль: 1) x>=0, y>=x; 2) x =x; 3) . и так далее

Ссылка на основную публикацию
Adblock detector